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This investigation presents an analysis of a Monte Carlo method for estimating local 
solutions to the Dirichlet problem for Poisson’s equation. The probabilistic algorithm consists 
of a modified “walk on spheres” that includes the effects from internal sources as part of the 
random process. A new derivation of the asymptotic expressions for the rate of convergence 
and average runtime of the algorithm is presented. These estimates are used to compare the 
Monte Carlo method with discrete difference schemes. Numerical experiments involving some 
two-dimensional problems contirm the efficiency of the probabilistic scheme. ‘87 1990 Academic - 
Press. Inc 

I. INTRODUCTION 

Monte Carlo methods for the solution of elliptic partial differential equations 
have two advantages over standard deterministic techniques. First, they can 
efficiently be implemented on massively parallel computers. Second, it is possible to 
obtain the solution at a few points using a small fraction of the computer time 
needed to obtain the solution in the full domain. For many problems this second 
point is not important, however, there are problems where it is. For example, 
Thompson -and Chen [ 1) employed probabilistic techniques to find economical 
approximations for local and “hot spot” temperatures in nuclear reactor com- 
ponents. Also, the probabilistic scheme can be very useful for solving problems that 
involve a severe gradient near a boundary point. In this case, finite difference 
schemes such as multigrid perform poorly; however, the Monte Carlo method can 
adequately approximate local behavior even in the presence of a steep gradient. 

In this paper we consider a Monte Carlo method for solving Poisson’s equation 
with Dirichlet boundary conditions: 

Vzc(x) = -q(x), XEL? 

24(x) =f(x,, XESQ 
(1) 
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The principles for solving Eq. ( 1) via discrete random walks on a grid are well 
known; see, for example, Hammersley and Handscomb [2], Klahr [3], or Bauer 
[4]. Since the discrete random walk generally requires a large number of steps to 
reach the boundary (see Haji-Sheikh [S]), an alternative method, the random 
“walk on spheres” may be used to reduce the amount of computation. Brown [6] 
and Muller [7] employed this technique to solve Laplace’s equation. Also, Haji- 
Sheikh and Sparrow [S] applied this method to Poisson’s equation for a nonzero 
constant source term q. To obtain solutions to homogeneous elliptic partial 
differential equations with constant coefficients, Booth [9, lo] considered a scheme 
that involved a weighted, random “walk on spheres.” For problems involving a 
nonconstant source term, the difficulty lies in estimating internal contributions 
without tracing particle trajectories or resorting to numerical integration. A method 
for taking into account the right-hand side of Poisson’s equation has been 
developed by Mikhailov and Elepov [ 111. The technique is based on a “one-point 
random estimation inside the sphere.” A description of these methods and bounds 
on the runtime of the algorithm is contained in the books by Elepov et al. [ 121 and 
Sabelfeld [13]. In this paper, we present a new method for analyzing the perfor- 
mance of this algorithm. The basic idea involves relating the average number of 
steps in the random walk to a specific Dirichlet problem for Poisson’s equation and 
then deriving an upper bound for the integral representation of the solution to this 
problem. We use the estimates of the runtime and the results of numerical 
experiments to compare the Monte Carlo method with discrete difference schemes. 

For the sake of completeness, we review the modified “walk on spheres” 
algorithm for Poisson’s equation with nonconstant source term q. We begin by 
outlining the procedure for estimating the solution u(xO) at an interior point x,, and 
then in the next section we discuss the algorithm more formally. Let us denote by 
S(x,) the largest sphere centered at x0 and entirely contained in 52. To approximate 
u(x,,) a point xi is chosen uniformly on the sphere S(x,) and a second point y, 
inside S(x,) is selected with respect to the density related to the Green’s function 
for the ball (See Fig. 1). The contribution from sources inside the ball is estimated 
by the weighted score a(xo) q(y,), where a(x,) is the normalizing constant with 
respect to the Green’s function. If x, is close to the boundary, say within 6, then 
u(x,) can be approximated by the evaluatingf(x) at a nearby boundary point. The 
estimate of u(x,,) produced by one particle is then u(x,) + a(xo) q(y,). Usually x, 
will not lie within 6 of (?Q, so that u(x ,) is not known. In this case we estimate 
u(x,) in the same way as before; that is, we sample x2 uniformly from the largest 
sphere S(x , ) (centered at x1 ) contained in Q and we select a point y2 inside S( x i ) 
according to the distribution induced by the Green’s function for the ball (See 
Fig. 1). Our approximation for u(xi) is the sum u(x,) + a(x,) q(y2). Replacing u(x,) 
in the previous estimate leads to the approximation u(xz)+a(xl)q(y2)+~(xo)q(y,). 
The procedure is repeated until the walk terminates at a point x,, that lies within 
6 of 1352. The estimate of the solution at x0 given by one particle is then 
4x,)+dx,- ,) dY,)+ ... + a(xo) q( y, ). Averaging over several trials provides an 
increasingly more accurate approximation for the value u(xO). 
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FIG. 1. Modified walk on spheres. 

The operation count of the algorithm is partially determined by the number of 
steps required for the particle to reach the boundary. We will show that the average 
number of such steps is on the order of Iln 61. Also, assuming that U(X) can be 
adequately approximated by boundary values whenever x is close to the boundary, 
we show that in order for the simulation to achieve a variance of size N-‘, an 
average of O(N In N) number of operations are required. Here, N is the number of 
particles or trials. 

It is instructive to compare the “walk on spheres” with the discrete random walk 
and finite difference schemes for a v-dimensional grid of side length M-l. The very 
best difference methods (such as a fast Poisson solver or multigrid) require at least 
O(M”) operations to achieve an accuracy of O(M-*). It is known that the discrete 
random walk performs on average O(M’) steps before exiting the domain and that 
the standard deviation of the simulation for M4 walks is O(M-‘), see, for example, 
Feynman [14, Vol. I, Section 41-41. It follows that to produce a standard deviation 
of size O(M -‘) the discrete random walk requires on average O(M6) operations. 
On the other hand, to achieve a standard deviation on the order of Mm2, we will 
show that the walk on spheres requires only O(M4 In M) operations. Here, the 
number of particles or trials is O(M4) and 6 is chosen to be O(M--P) for some 
p > 0. This procedure clearly outperforms the discrete walk and compares favorably 
with difference schemes for v 3 4. (Let us compare this procedure with the modified 
Monte Carlo scheme that numerically evaluates the integrals of the source q with 
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respect to the Green’s function for the ball. It can be shown that, in this case, a 
simulation which uses O(M4) particles or walks has a standard deviation of 
approximately O(iW’). Assuming only that q is continuous, most of the integra- 
tions would require at least O(M’) operations to produce an accuracy of O(ik-‘). 
Although the integral associated with the first step need only be calculated once, 
most of the integrals associated with the remaining 0( Iln Sl) = O(ln M) steps must 
be evaluated for each walk. It follows that a Monte Carlo method using this 
prescription would require roughly O(M6 In M) opperations.) It is worth noting 
that the number of operations for the “walk on spheres” remains the same in higher 
dimensions whereas the operation count for finite difference methods increases at 
least linearly with the number of grid points. So the procedure becomes more 
attractive the higher the dimension. In addition, the algorithm can be implemented 
on a massively parallel machine in a straightforward manner. 

The next section describes more precisely our modified walk on spheres. In the 
third section we derive an upper bound for the average number of steps required 
to reach the boundary. Also we present a bound on the variance of the process. The 
method of proof used here is new. The fourth section provides the results of some 
numerical experiments. 

II. MODIFIED RANDOM WALK 

For this discussion we assume that the boundary 8Q is sufficiently smooth so as 
to ensure the existence of a unique solution U(X) that is twice continuously differen- 
tiable in Q and continuous on L2 u dQ. Also we assume that q is continuous in 
Q u 8Q and that the domain Q consists of a finite union of bounded convex sets. 
In addition,. we suppose that the Green’s function G,(x, x,,) for the Dirichlet 
problem on 52 exists and that it is continuously differentiable for x E D u X? - {x0}. 
(It may be possible to prove our results under less restrictive assumptions; however, 
these conditions are sufficient.) To simplify the discussion, we focus our attention 
on two- and three-dimensional problems. It is known that the solution to Eq. (I), 
u(x,), has the integral representation (see, for example, Garabedian [15], 
Zachmanoglou and Thoe [ 161, or Vladimirov [ 171) 

4x0) = [ 
1 

q(x) G(x, xd dx + - IS(x,)l i S(XO, u(x) dDv (2) 
&x0) 

where B(x) is the largest ball contained in Q and centered at x0, S(x,) = 8f3(x,) is 
the boundary of B(x,), IS(x,)J denotes the surface area of B(x,), and G(x, x0) is the 
Green’s function for the ball. 

Equation (2) admits a probabilistic interpretation. The value u(xO) at the center 
of the sphere is the average of q(x) with respect to the Green’s function for the ball 
plus the uniform average of the boundary values on the surface of the ball. If the 
boundary values on the sphere were known, u(x,,) could be estimated by randomly 
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sampling q(x) inside the ball (to estimate the first integral) and uniformly selecting 
u(x) on the sphere (to estimate the second integral). Averaging over a large number 
of trials and summing would give an estimate of u(x,,). The method for solving a 
more general boundary value problem is an extension of this procedure. 

To write the preceding considerations more formally, we introduce some 
notation. Let d= d(x,) denote the minimum distance from x0 to the boundary SC2 
(d(x,) is the radius of B(x,)) and set p(x, x,) equal to the density (in rectangular 
coordinates) associated with the Green’s function (for the Dirichlet problem) for 
the ball centered at x0 with radius d, namely, 

~4x7 xo) = G(x, xoMxoL (3) 

where 

4%) = i G(x, x0) dx: 
” B(Wl 

here a(~,) = d’/4, d’/6 in two and three dimensions, (Zachmanoglou and Thoe 
[ 161, Sections 7.9 and 7.10) respectively. In two dimensions the density is given by 
(Zachmanoglou and Thoe [ 161) 

p(r, 8) = 5 in f, Odrdd, 

where (r, 8), 0 < 8 < 27c, is the polar coordinate representation of a point in a 
reference frame with the origin placed at x0. Notice that p(r, 0) is circular sym- 
metric, so that 8 is selected uniformly from 06 0<2n and r is chosen according to 
the density given on the right-hand side of identity (4). The three-dimensional 
density is given by (Zachmanoglou and Thoe [ 161) 

r(d- r) sin 4, O<r<d, (5) 

where (r, 8, d), 0 Q 0 d 21r, 0 6 4 < TC, is the representation in spherical coordinates 
of a point in a system with the origin located at x,,. 

Now, suppose X denotes a uniformly distributed random variable on the sphere 
S(x) and Y designates a random variable with density p(x, x,). Using the definition 
of p(x, x0) and a(~,), the integral representation (2) can be rewritten as 

4x0) = 4%) Eq( Y) + -wJ3, (6) 

here E denotes expected value. The first term is a weighted average taken with 
respect to the Green’s function and represents the expected contribution from 
sources inside the ball. The second term describes a mean value with respect to a 
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uniform distribution on the sphere and represents the average score upon exiting 
the ball @x,-J. 

The uniform density and the density p(x, x0) can be used to construct transition 
probabilities for a markov chain. The transition from an initial point X,=x0 is 
performed by uniformly selecting a point X, on the sphere S(x,) and by generating 
a random variable Yi with density p(x, x0). Given the position X, = xk at the kth 
step the transition to the (k + 1)th step is carried out by choosing X, + , uniform on 
the sphere S(x,) and by selecting Y,, i according to the density p(y, xk) (X,, i and 
Y k+l are independent of one another) see Fig. 1. The “walk on spheres” is 
simulated by repeating this procedure until the particle exits the domain. For the 
points Xk the solution U(X) must satisfy Eq. (6); that is, with probability one 

here conditional expectations are used because the densities are determined by the 
position of Xk. 

Roughly, the connection between the solution to the Dirichlet problem and the 
random process follows from the telescoping sum 

n-l 
dxO) = Eu(xO) = Eu(x,z) + E EC”(Xk) - dxk+ 111 

k=O 

n-l 

= E”tX,) + 1 ‘+@-k) - E[dXk+ 1) 1 xkl >v (8) 
k=O 

where X0=x0. In the last equality we have used the fact that E{E[u(Xk+i)IXk]} 
= E[u(X,+ ,)I, see, for example, Breiman [ 17, p. 751. Applying identity (7) yields 

n-1 
u(xO)=Eu(xn)+ 1 E[a(Xk)dYk+,)l. 

k=O 
(9) 

Now, suppose the process hits the boundary on the n th step, then all the terms on 
the right-hand side of equation (9) would be known. This suggests that u(xo) is the 
mean value of the exit points plus a weighted average from internal contributions. 

The Monte Carlo method makes use of the preceding observation to estimate 
~(x,,). However, the probabilistic scheme as stated cannot be realized numerically 
because the process almost surely (with probability one) does not reach the 
boundary in a finite number of steps. To limit the number of steps we end the walk 
whenever it gets to within some distance d(x) < 6 of the boundary and we assume 
that the solution can be well approximated by a nearby point on the boundary (the 
error can be estimated as per Booth [lo]). In other words, we assume that the 
solution to the Dirichlet problem on the set (see Fig. 1) 

l-,= {xEauaa:d(x)<6} (10) 
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can be adequately approximated by values f(x’) along the boundary (here x’ is 
chosen so that lx’- XI =d(x)), and we terminate the process whenever X,E r,. 
Also, we define 

n*=tnin{n:X,Er6}, (11) 

as the stopping time for the random walk. To see that P(n* < + co) = 1 we notice 
that at each step there is a positive (possibly small) probability that the process will 
terminate. This probability is bounded below by some positive constant, say P(6). 
The probability that the process terminates is greater than or equal to the 
probability of at least one success in an infinite sequence of Bernoulli trials with 
probability of success at each trial given by P(6). Since the latter occurs with 
probability one, it follows that P(n* < + co)= 1. 

To demonstrate the relationship between 14(x0) and the process that terminates 
whenever the particle’s distance to the boundary is less than b we proceed as before 
(except that n is replaced by n*), set X0 = x and write u(xO) as a collapsing sum to 
obtain 

4x0) = -wXo) 
n*-I 

=Eu(X,*)+E c C4~d--u(~/,+,)l 
k=O 

n* - I 

=Eu(X,*)+E c {u(Xk)-E[“(Xk+,)IXkl} 

k=O 

(12) 

The last step follows by using standard arguments for conditional expectations, 
Breiman [18]. Next, applying identity (7) yields 

n*-1 

dXO)=E@-,z*)+E c a(Xk)dYk+,) . 
k=O 1 (13) 

(The main difference between Eqs. (9) and (13) is the random upper limit n* - 1. 
To prove results about the algorithm, it is not sufficient to derive expressions for 
a fixed epoch n as in equation (9), we must also analyze expressions involving the 
random stopping time n*. The presence of the random variable n* in Eqs. (12) and 
(13) requires that we use a slightly different argument than the one given in Eqs. (8) 
and (9); see Breiman [18].) Using the approximation Eu(X,.) z Ef(X,.), with f 
evaluated at a point close to X,,., leads to 

.*-I 

U(XO)zEf~Xn*)+E c a(Xk)q(Yk+l 
k=O )I 

(14) 

In other words, we have shown that the solution to the boundary value problem 
at x0 approximately equals the expected contribution from the “exit points” plus 
the mean value of a weighted average for the internal contributions q( Yk+ ,). 
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At the conclusion of each walk we compute the random sample 

II* ~ I 
Z;=fGc,*)+ c a(X:)q(Y;+,), (15) 

k=O 

where i denotes the ith experiment. By Eqs. (14) and (15) we have EZi z u(xo). An 
estimate for the mean of Zi is given by the statistic 

(16) 

where N is the number of trials. By the law of large numbers S, approximates u(xo) 
for N sufficiently large. 

The duration of the random walk and the rate at which S, converges determine 
the computing time for the algorithm. Here and in the following we will assume 
that x0 is fixed and that 6 is considerably smaller than d(x,). Assuming that the 
domain consists of a finite union of bounded convex regions we demonstrate 

LEMMA. For rundom walks originating at x0 E !2 - m, 

&r*=O(lln61) andVarZi=O(l), as b-,0, (17) 

with n* = min(n: d(X,) < 6) and Z, =f(Xi,) + C a(Xi) q( yL+ ,). 
k=O 

The proof of the lemma is deferred to the next section. 
The preceding result implies that on average the walks are of short duration. For 

example, suppose 6 = N-+’ with p > 0, the expected length of the walk is only on the 
order of In N. 

The bound on Var Zi provides an estimate for the rate at which S, converges; 
that is, 

VarS,=N-’ i VarZ;=O(N-‘). 
i= I 

(18) 

Here we have used the independence of the Zls, i.e., Cov(Z,, Z.i) = 0, i # j. 
Expression (18) shows that S,b, converges in mean square to EZ, at the rate 
O(N-‘). 

Recall from Eqs. (14) and (15) that EZ,~s(x,) and that the error in this 
approximation was introduced by the estimate Eu(X,.) z Ef(X,,,). To quantify this 
error we make the assumption that l&(X,.) - Ef(X,,.)l = O(6”P) as 6 + 0 for some 
p > 0. This assumption holds true (although not demonstrated here), for example, 
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whenever u is continuously differentiable over Q u dB. Under this assumption we 
can use Eqs. (13), (15), (16), and (18) to derive 

=E &-ES,+;,; [Ef((X:.)-E4J-:,.)I 
2 

,=I 

,<2E(S,-E&)‘+# ,Ef(X;.)-Eu(X,.),j2 
r=l 

G 2 Var SN + 2[Ef(XA,) - Eu(X;.)]~ = O(Np1 + #IP), (19) 

here we have used the inequality (A + B)2 d 2A2 + 2B2 and the fact that the random 
variables XL. have the same distribution. In other words, we have shown that the 
statistic SN converges in mean square to u(xO) at the rate O(N-’ + ~5”~). Assuming 
the validity of the lemma we have 

THEOREM. For 6=NP P” the statistic SN converges in mean square to the solution 
u(xO) at the rate O(N-‘) and the average operation count for the simulation is 
O(N In N). 

The average operation count is derived by multiplying the number of experiments 
by the expected number of steps in a random walk. 

III. BOUNDS ON EXPECTED STOPPING TIME AND VARIANCE 

The proof of the lemma is based on a specific Dirichlet problem for Poisson’s 
equation, Notice that the length of the walk, n *, depends only on the domain; that 
is, the duration of the walk does not depend on the solution to a particular problem 
given by Eq. (1). So we may consider the problem given by 

V2tv(x) = -q(x), XEQ 

w(x) = 0, xEaf2, (20) 

where q(x)=d(x)-‘, XEQ-T,, q(x)=a-‘, x~f~, and l2 is the same as in 
Eq. ( 1). It is known that (see, for example, Vladimirov [ 171) 

M’( x0) = J q(x) G,(x, xc,) dx. (21) 
R 

In the above, G,(x, x0) is the Green’s function for the Dirichlet problem on 
B u dQ. The bound on En* is derived by estimating M’(x~). 

To see this, we first notice that w(x,,) 20, since G,(x, x,,) 20 for (x fx,) 
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(Zachmanoglou and Thoe [16]) and q(x)20 in Eq. (21). 
expression ( 13 ), 

[ 

n*- I 
W(xO)=W~n*)+E c a(X,)q(Y,+ 

k=O 

n*- I 

2~’ 1 a(Xk)dyk+,) * 
k=O 1 

Next we observe from 

l-22) 

Recalling the inequality a(x) > d(x)*/6 from Eq. (3) (for two- and three-dimensional 
problems), the definition of q(x) = min{C*, d(x)-*} in Eq. (20) and the fact that 
d( Yk + ,) 6 2d(X,) (see Fig. 1) leads to the lower bound a(Xk) q( Y, + ,) > c, for some 
positive constant c. It follows from expression (22) 

w(xo) B cEn*, (23) 

which is the desired inequality. In the following c and c’ will denote (not necessarily 
the same constants each time they appear) positive constants. 

The maximum of the upper bounds for the integral in identity (21) over each 
convex subregion provides a bound on w(xO). The asymptotic analysis for the 
convex region containing x0 is analogous to the argument for the other convex 
subregions, so we may assume that Q is convex. Let us partition Sz into three 
subsets 

“(xo)=jB+ j~_~--~+j~-q(x)GR(~.xo)dx, 
d n 

(24) 

FIG. 2. Diagram for estimation of integrals. 



MONTE CARLO POISSON SOLVER 133 

here B is a ball centered at x,, with radius r0 = 4x,)/2, see Fig. 2. We establish 
bounds for each of these integrals in the two-dimensional case, the three-dimen- 
sional case is similar. 

We begin by recalling the definition of the Green’s function G,(x, x0) for the 
Dirichlet problem on 52 u c?Q (Zachmanoglou and Thoe [ 16, Sect. 7.91) 

G&x, xd=&ln Ix--~I +dx, x0), XEQ 

(25) 
G,(x, xd = 0, XEasz 

here g(x, x,,) is harmonic in D and g(x, x,,) = - $I In Ix - x01 for x E XI. We have 
assumed that g(x, x0) is continuously differentiable on B u dQ. 

(1) For the integral I, over the region B, we observe that the functions q(x) 
and g(x, x0) are bounded so we need only estimate JB In Ix - x,,I dx. The latter can 
be evaluated and is finite. 

Before proceeding with the analysis of the integrals I, and I, over the regions 
Q - r, -B and I-,, respectively, we estimate the rate at which G,(x, x,,) goes to 
zero as x approaches the boundary. For x E 52 - B we will show that 

Gdx, x0) < c d(x). (26) 

Since, by assumption, g(x, x0) has bounded first derivative, a first order expansion 
of the function u(s) = g(x + (1 - s)(x’ -x), x0) in the variable s leads to 

g(x,x,)=u(1)=v(0)+0((x’-xl), 

=g(x’, %)+~(lx’-xl), 

= -&In Ix’-x0( +O[d(x)], (27) 

where x’ is a point on the boundary aQ chosen so that d(x) = Ix’- xl, see Fig. 2. 
Substituting this expression into Eq. (25) produces 

1 lx-%I 
GJx, x0) =g In lx, _ xoI + @4x)1. 

Using the inequality (x-x01 6 (x-x’/ + (x’ -x0( and the estimate ln( 1 + q) = 
O(q), q >O, we obtain the bound 

=O(E)=O[d(x)]. 

Replacing the first term in Eq. (28) by expression (29) we arrive at inequality (26). 
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(2) To bound the integral Z2 we use the definition of q(x) = d(x) -* on 52 - r, 
and expression (26) to derive 

I* = I R _ r <b ~ B q(x) Gn(x, xo) dx 

6C I d(x)-’ dx. (30) 
Q-r,-B 

Next, we change the independent variables from rectangular coordinates to polar 
coordinates (Y, (3) with x,, treated as the origin. Let us consider a ray that originates 
at x0 and has angle 13. We set y and z equal to the points of intersection of the ray 
with 8B and 8rb nQ, respectively (see Fig. 2) and define R(8) = Iz- x01 (notice 
that Iy - x,J = rO). Also, we observe that R(8) is bounded by some constant, say 
the maximal chord length or diameter D. The integral on the right-hand side of 
expression (30) can be rewritten as 

d(x)-’ dr d6 

here x is the point corresponding to (r, 0). 
To proceed we will need the following bound for d(x)- ‘, 

d(x)-@ ,zrl-x,pi, 
r0 

(31) 

where z” is the intersection of the ray through z (originating at x0) with dQ, see 
Fig. 2. To this end we set x’ equal to a point satisfying d(x) = Ix’ - x( and construct 
the line segment 7 between x and x’, see Fig. 2. Let us consider the half-plane 
containing x’ and the line through y and z (the line forms the boundary of the 
half-plane). We introduce the half-line (contained in the half-plane) that starts at y 
and is parallel to y. Let us denote by y” the intersection of the half-line with CX2, 
see Fig. 2 (notice that J y - y”l is bounded away from zero, in fact, ( y - y”( 3 
d(x,)/2 = ro). Since Q u X2 is convex, the chord between y” and z” must lie in 
52 u %2 and, therefore, it intersects the line segment y, say at the point x”, see 
Fig. 2. Because the triangles with vertices (y, y”, z”} and {x, x”, z”} are similar, 

Jz”-xl 1,“-yl D ---= 
lx”-xl lu”-yI 
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and, since Ix”--] 6 Ix’-xl =d(x), it follows that 

as desired. 
Applying inequality (32) to the inside integral on the right-hand side of 

inequality (3 I ), we obtain 

here z” is a function of 0 and x corresponds to (r, 0). Now, a change in the variable 
of integration to I = R(8) - r + 6 or r = R(B) - t + b produces 

.RCHj-ro+J 
< J tr’ dt. (36) 

4 

The inequality follows from the observations: 

Izn-x/ = 12”-zl +/z-x( 26+ [R(e)-r]= t. (37) 

The last integral in expression (36) is 0( Iln 61), as desired. 
(3) To provide a bound for the integral I, over I-, we notice that the area of 

r, is bounded by bL, where L is the arc length of dQ (see, for example, Courant 
and John [ 19, section 4.101). Using expression (26) and the fact that d(x) 6 6 for 
x E fs produces the inequality 

J q(x) G,(x, xo) dx < c s 
6~m2d(x)dx<c6-’ dxGcL. 

r;, r,, 1 . r., 

This completes the proof of the first part of the lemma, namely En* = 0( Iln Sj). 
To finish the proof of the lemma we must analyze the variance of 

Zi = f(Xi.) + x;Li’ a(X;) q( Y6 + , ), where f and q are from the original problem 
given by Eq. (1). Because f is bounded, the problem can be reduced to finding the 
bound for E[C&’ a(X,) q( Yk+ ,)I2 (the Z,‘s have the same distribution so we can 
omit the superscript i). Since q is presumed bounded in Eq. (1) we need only 
estimate E, = E[~~~;’ a(X, To this end we consider the specific Dirichlet 
problem given by Eq. (16) with q = 1. Using methods analogous to those given by 
expression (18) with q = 1, we obtain for a walk originating at x 

(38) 
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In this case q is constant (q = 1) so that, by Eq. (21), M(X) does not depend on 6. 
By virtue of the continuity of w(x) (see Eq. (21)) the right-hand side of inequality 
(38) is bounded by some constant say c’ for all x EQ - f,. Because the inequality 
Ez < c’ holds for an arbitrary starting point x E Q - r,, we can replace the initial 
position by a random variable, say X0, 

with probability one. Also, since a(x) 6 d(x) < D, it follows that 

(39) 

(40) 

Rewriting the term E, we arrive at the desired conclusion, 

Here, again, we have used the result for conditional expectations from Breiman 
[ 173. The term ,!?[I;‘;: I a(Xk) 1 xk] is bounded by the constant given in expression 
(39) with X, as the initial position. 

The key step in this argument is the introduction of the appropriate Dirichlet 
problem for Poisson’s equation. In turn, the asymptotic analysis is reduced to 
estimating the solution to the boundary value problem. The desired approximations 
are then obtained from an integral representation of the solution. 

IV. NUMERICAL EXPERIMENTS 

Another indication of the performance of the algorithm was obtained through 
numerical experimentation. The problem chosen for this purpose involves a severe 
temperature gradient near the origin. In this case, a finite difference. scheme like 
multigrid performs poorly whereas the Monte Carlo method is relatively unaffected. 
To demonstrate the usefulness of the probabilistic technique we also present a 
method for estimating the severity of the gradient. 

The domain selected for this problem is the unit disk minus the first quadrant; 
that is, the set Q = {(r, 0): 0 < r < 1, - 3n/2 < 8 < 0}, see, for example, Fig. 1. We 
consider the Poisson equation 

V& = - (2 - y2)e-r2f2 (42) 
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TABLE I 

r Theta 
Actual 

solution 
Monte 
Carlo Error 

Average 
no. steps 

0.1244 - 0.7906 0.8623 0.8672 0.0049 14.42 
0.2320 - 0.0274 0.9678 0.9626 0.0052 10.31 
0.2187 - 3.3975 0.4308 0.4377 0.0069 15.03 
0.1476 -4.1617 0.4695 0.4806 0.0111 12.90 
0.0129 - 1.4790 0.8890 0.8854 0.0036 13.94 

with a radially symmetric source q(r, 69) = (2 -T*) exp( -r*/2). To obtain a 
comparison between numerical results and the actual solution, the function 

U(T, 0) = ra sin(a0) + e-r2.‘2 (43) 

is taken as the solution to the Dirichlet problem, here a = f, f. and 1. The bound- 
ary conditions are specified by the value of u on 852. For a = t and $ the first term 
in expression (43) is not differentiable at the boundary. These values were chosen 
so as to reflect a temperature distribution u with a severe gradient at the origin. 

First we let a = i. In this case the boundary conditions are given by: U(T, 0) = 
exp( - r2/2), U(Y, -3x/2) = - rli3 + exp( -r*/2), and u( 1,0) = sin(8/3) + e-‘12. The 
density p(r, ~9) used in the simulation is given by identity (4). Five points were 
selected uniformly from the intersection of Sz with the disk of radius $ centered at 
the origin. The walks were terminated when the distance to the boundary was less 
than b = 5 x 10d5 and N= 500 random walks were initiated from each point. For 
OL = f the largest error introduced by the approximation u(X,$.) zf(.Yn*) occurs near 
the origin. For this choice of 6 the error is approximately 6”3 2 0.04. The statistic 
s 500 was computed and the result was compared with the solution U(T, 0). In 
addition, the average number of steps for the “walk on spheres” was calculated for 
each point. The results are shown in Table I. (The initial points are given in polar 
coordinates (r, e).) After 500 trials all but one of the values produced by the 
simulation are within lo-* of the actual solution. The experimental results are 
better than might be expected for this choice of 6; however, a large number of walks 
terminate near the circular arc r = 1 and the error introduced there is very small, 
z 6. So the average error produced by the approximation u( X,. ) zf(Xn.) is small. 

Next we set a = $. The boundary values are: U(T, 0) = exp( -r2/2), U(T, - 3rc/2) = 
exp( -r*/2), and u( 1, 0) = sin(28/3) + e-‘j2. In this case the term r2’3 sin(28/3) 
vanishes along the rays 0 = 0 and 0 = - 3n/2. This example is of interest because, 
even though U(T, 0) is well behaved for 8 = 0, - 3rr/2 (in fact it is analytic along 
these line segments) its derivative at the origin does not exist. A second experiment 
with a= f, N= 500, and 6=5x IO-’ was performed with the results shown 
in Table II. (In this case the error introduced near the origin is small since 
62!3 z 0.001.) The initial points are the same as in the previous case. Most of the 
values lie within lo-* of the correct solution. 
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TABLE II 

r Theta 

0.1244 -0.7906 
0.2320 - 0.0274 
0.2187 - 3.3975 
0.1476 -4.1617 
0.0129 - I .4790 

Actual Monte 
solution Carlo 

0.8670 0.8748 
0.9665 0.9599 
0.6973 0.7160 
0.8889 0.9254 
0.9541 0.9533 

Error 

0.0078 
0.0066 
0.0187 
0.0365 
0.0008 

Average 
no. steps 

14.42 
10.31 
15.03 
12.90 
13.94 

Finally, we let LX = 1. This example was chosen to provide a comparison with a 
problem that has an analytical solution on the closure of the domain. As before we 
set N= 500 and 6 = 5 x 10A5. For c1= 1 the error produced by the approximation 
u(X,.) z j-(X,,*) is very small along the entire boundary ~6. The results are given 
by Table III. Most of the values are within lop2 of the analytical solution. 

As an example of the usefulness of the probabilistic approach we present a proce- 
dure for estimating the “magnitude” of the gradient at the origin. Suppose that the 
solution to the Dirichlet problem for the domain given in the preceding examples 
is known to be of the form 

ufr, 0) = Ar2f3 sin(28/3) + F(r, ~9) (44) 

where F is twice continuously differentiable on Q u &2 and A is not known. We 
refer to the unknown coefficient A as the “magnitude” of the gradient at the origin. 
To estimate A we use a first-order Taylor expansion in r for F and then, after 
solving for A, we obtain 

l((r,H)-F(O,tl)-~F(r,tl) 
I I 

Y rP2’3/sin(28/3j 
r=O 

+ O[P3/sin(28/3)]. (45) 

The derivative dF/dr is calculated from the known values along the rays 8 =0 
and 0 = - 3~/2. An approximation for U(Y, (3) is provided by the simulation. For 

TABLE III 

r Theta 

0.1244 - 0.7906 
0.2320 - 0.0274 
0.2187 -3.3975 
0.1476 -4.1617 
0.0129 - 1.4790 

Actual Monte 
solution Carlo 

0.9039 0.9096 
0.9671 0.9592 
0.0317 0.0518 
0.1150 0.1427 
0.987 1 0.9919 

Error 

0.0057 
0.0079 
0.0201 
0.0277 
0.0048 

Average 
no. steps 

14.42 
10.31 
15.03 
12.90 
13.94 
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example, consider the solution at the point (r, 0) = (0.0129, - 1.479) given in 
Table II (here F(r, 8) = exp[ -r2/2]). In this case 

A z CO.9533 - l.O]~~,~/sin(2%/3) z 1.02, 

whereas the constant A in Eq. (43) is one. So the procedure provides a good 
approximation for the magnitude of the gradient at zero. 

V. SUMMARY 

An efficient probabilistic scheme for approximating local solutions to Poisson’s 
equation with a nonconstant source term has been developed by exploiting a 
modified random walk on spheres. A rigorous derivation for the rate of convergence 
and runtime of the simulation demonstrated that to achieve a variance of order 
N-’ requires on average O(N log N) operations. The technique represents a 
significant improvement in efficiency over other Monte Carlo methods for solving 
inhomogeneous source problems. Also, for estimating local solutions, the algorithm 
compares favorably with discrete difference schemes for \I-dimensional problems, 
1’ 3 4. Another confirmation of the efficiency of the method was obtained by con- 
ducting some numerical experiments on a problem involving a severe temperature 
gradient near a boundary point. These experiments also indicate the methods 
ability to estimate the severity of the gradient. 

In addition, the technique can be applied to other elliptic operators by intro- 
ducing the appropriate Green’s function. Problems involving certain other types of 
boundary conditions can be solved, for instance, by using methods developed for 
the simple random walk. The analysis of these and other methods is a subject of 
continuing research. 
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